ggplot2
An implementation of the grammar of graphics

Hadley Wickham
Outline

• Intro: installation, documentation, data and qplot
• How make to a plot
• Geoms, stats, scales, facets and coordinate systems

• Let me know if you have questions
ggplot2

- `install.packages("ggplot2")`
- 0.5.7 should be available v. soon
- http://had.co.nz/ggplot2
 - documents 99 ggplot objects with over 500 examples
 - opportunities for feedback
 - link to (draft) ggplot book
Diamonds data

- ~54,000 round diamonds from http://www.diamondse.info/
- Carat, colour, clarity, cut
- Total depth, table, depth, width, height
- Price
qplot

- Wraps up all the details of ggplot with a familiar syntax borrowed from plot
- Additional features:
 - Automatically scales data
 - Can produce any type of plot
 - Facetting and margins
 - Creates objects that can be saved and modified
qplot(diamonds$carat, diamonds$price)
qplot(carat, price, data = diamonds)
qplot(carat, price, data = diamonds, colour=clarity)
qplot(carat, price, data = diamonds, geom=c("point", "smooth"), method=lm)
qplot(carat, data = diamonds, geom="histogram")
qplot(carat, data = diamonds, geom="histogram", binwidth = 100)
Defaults

- Layers of convenience functions
- Multiple levels allow you to trade-off simplicity and control
- qplot is the simplest to use, but gives the least control
- To understand more sophisticated levels you need a basic understanding of the grammar
How to make a plot

<table>
<thead>
<tr>
<th>length</th>
<th>width</th>
<th>depth</th>
<th>trt</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>4</td>
<td>a</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>a</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>15</td>
<td>b</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>80</td>
<td>b</td>
</tr>
</tbody>
</table>
How to make a plot

• Want a scatterplot of length vs width

<table>
<thead>
<tr>
<th>length</th>
<th>width</th>
<th>depth</th>
<th>trt</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>4</td>
<td>a</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>a</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>15</td>
<td>b</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>80</td>
<td>b</td>
</tr>
</tbody>
</table>
How to make a plot

- Want a scatterplot of length vs width
- What is a scatterplot?

<table>
<thead>
<tr>
<th>length</th>
<th>width</th>
<th>depth</th>
<th>trt</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>4</td>
<td>a</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>a</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>15</td>
<td>b</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>80</td>
<td>b</td>
</tr>
</tbody>
</table>
How to make a plot

• Want a scatterplot of length vs width

• What is a scatterplot?

 • Represent observations with points (geom)

<table>
<thead>
<tr>
<th>length</th>
<th>width</th>
<th>depth</th>
<th>trt</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>4</td>
<td>a</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>a</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>15</td>
<td>b</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>80</td>
<td>b</td>
</tr>
</tbody>
</table>
How to make a plot

• Want a scatterplot of length vs width

• What is a scatterplot?
 • Represent observations with points (geom)
 • Linear scaling of x and y axes (scales)

<table>
<thead>
<tr>
<th>length</th>
<th>width</th>
<th>depth</th>
<th>trt</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>4</td>
<td>a</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>a</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>15</td>
<td>b</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>80</td>
<td>b</td>
</tr>
</tbody>
</table>
How to make a plot

• Want a scatterplot of length vs width

• What is a scatterplot?
 • Represent observations with points (geom)
 • Linear scaling of x and y axes (scales)
 • Cartesian coordinate system

<table>
<thead>
<tr>
<th>length</th>
<th>width</th>
<th>depth</th>
<th>trt</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>4</td>
<td>a</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>a</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>15</td>
<td>b</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>80</td>
<td>b</td>
</tr>
</tbody>
</table>
Data

<table>
<thead>
<tr>
<th>length</th>
<th>width</th>
<th>depth</th>
<th>trt</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>4</td>
<td>a</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>a</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>15</td>
<td>b</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>80</td>
<td>b</td>
</tr>
</tbody>
</table>
Mapping

<table>
<thead>
<tr>
<th>length</th>
<th>width</th>
<th>depth</th>
<th>trt</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>4</td>
<td>a</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>a</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>15</td>
<td>b</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>80</td>
<td>b</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>colour</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>a</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>a</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>b</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>b</td>
</tr>
</tbody>
</table>
Scales

Need to convert to physical “drawing” units

(And coordinate system)
Geoms

Guides
(from scales and coordinate systems)

Plot

Title
Multiple layers, statistical transformation
Components

- Data
- Geometric object (geom)
- Statistical transformation (stat)
- Scales
- Coordinate system
- (+ Position adjustment, facetting)
Histogram

- Geom: bar
- Stat: bin
- Scale: linear
- Coordinate system: Cartesian
Scatterplot

- Geom: point
- Stat: identity
- Scale: linear
- Coordinate system: Cartesian
Layers

- Previous description is a bit of a simplification
- Actually have: defaults + layers + scales + coordinate system
- Layer = data + mapping + geom + stat + position
Plot definition

ggplot(data, mapping) +
layer(
 stat = "",
 geom = "",
 position = "",
 geom_parms = list(),
 stat_params = list(),
)

Layers

• Usually won't write out the full specification, but use a shortcut:
 • `geom_smooth()`
 • `stat_summary()`
 • ...

• Every geom has a default statistic, every statistic a default geom (but can override)
Examples

d <- ggplot(diamonds,
aes(x=carat, y=price))
d + geom_point()
d + geom_point(aes(colour = carat))
d + geom_point(aes(colour = carat))
 + scale_colour_brewer()

ggplot(diamonds) +
geom_histogram(aes(x=price))
Data + mapping

• Data and mappings usually stay the same on a plot, so they are stored as defaults:
• `ggplot(data, mapping = aes(x=x, y=y))`
• `aes` function describes relationship, doesn't supply data
Geoms

• Geoms define the basic "shape" of the elements on the plot
• Basics: point, line, polygon, bar, text
• Composite: boxplot, pointrange
• Statistic: histogram, smooth, density

• Documentation
Statistics

- We haven't used explicitly, but they underlie many of the layers we have been creating - some geoms are really statistics in disguise:
 - `geom_histogram = stat_bin + geom_bar`
 - `geom_smooth = stat_smooth + geom_ribbon`
 - `geom_density = stat_density + geom_ribbon`

- Separate transformation of data from its graphical representation
Variations on a histogram

```r
p <- ggplot(diamonds, aes(x=price))

p + geom_histogram()
p + stat_bin(geom="area")
p + stat_bin(geom="point")
p + stat_bin(geom="line")

p + geom_histogram(aes(fill = clarity))
p + geom_histogram(aes(y = ..density..))
```
New variables

• Some statistics produce new variables in the data (see docs for details)
 • `stat_bin` produces count and density

• If you want to map an aesthetic to one of these new variables, surround it with `..`
 • `ggplot(diamonds, aes(x=price))`
 + `geom_histogram(aes(y = ..density..))`
 • `+ geom_histogram(aes(colour = ..count..))`
Parameters

- Parameters modify appearance of geoms and operation of statistics
 - `+ geom_smooth(method=lm)`
 - `+ stat_bin(binwidth = 100)`
 - `+ stat_summary(fun="mean_cl_boot")`
 - `+ geom_boxplot(outlier.colour = "red")`

- Any aesthetic can also be used as a parameter
 - `+ geom_point(colour = "red", size = 5)`
 - `+ geom_line(linetype = 3)"`
Setting vs mapping

p <- ggplot(diamonds, aes(x=carat, y=price))

What will this do?
p + geom_point(aes(colour = "green"))
p + geom_point(colour = "green")
p + geom_point(colour = colour)
Writing your own

- Fairly easy to write your own
- But not documented yet
- Don't be afraid of looking at the source
Your turn

• Look at the examples for `stat_summary` (http://had.co.nz/ggplot2/)
• Try them out
• How could you use them to better understand the diamonds data?
• Scales control the mapping between data and aesthetics, and control the display of the matching guide (axis or legend)

• `ggplot` automatically adds default scales as we need them, but we will often need to customise
Basics

• Change name and range or limits
• All scales take name as first argument
 • axis or legend name
 • can be an expression
• All position scales also take limits argument
 • Any data outside of limits is not plotted
 (but is still used for computation)
Position scales

• Can be used to plot on non-linear scales
 • `scale_x_log10`, `scale_x_sqrt`, ...

• Can also control exactly where breaks occur (with `breaks` argument) and the amount of extra space on the borders (with the `expand` argument)
Scales

- Colour/fill probably most commonly manipulated
 - discrete: hue, brewer, grey, manual
 - continuous: gradient, gradient2
 - identity

- Also see:
 - scale_size, scale_area
 - scale_linetype
Your turn

- `qplot(carat, data=diamonds, geom="histogram", fill=clarity)`
- `qplot(carat, cut, data=diamonds, geom="jitter", colour=price)`
- Look up the different colour scales in the documentation and try them out
Facetting

• It's often useful to draw small multiple of subsets of your data

• Currently, there is only one way to do this:
 • + facet_grid(row ~ col, margins = TRUE)
 • (just like in qplot)

• In the future there will be more
Coordinate systems

• Control how the two positions aesthetics work together (default: Cartesian)

• Others of note:
 • coord_flip()
 • coord_map()
 • coord_polar()

• Occur after statistics and affect the appearance of geoms
log10(price)

log10(carat)
Your turn

What's the difference?
qplot(log10(length), data=movies, geom="histogram", binwidth=0.1)
qplot(length, data=movies, geom="histogram", binwidth=0.1, log="x")
qplot(length, data=movies, geom="histogram", binwidth=10) + coord_trans(x="log10")